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Abstract. Several studies have shown that hydrological models do not perform well when applied to periods with climate
conditions that differ from those during model calibration. This has important implications for the application of these models in
climate change impact studies. The causes of the low transferability to changed climate conditions have, however, only been
investigated in a few studies. Here we revisit a study in Austria that demonstrated the inability of a conceptual model to simulate
the discharge response to increases in precipitation and air temperature. The aim of the paper is to shed light on the reasons of
these model problems. We set up hypotheses for the possible causes of the mismatch between the observed and simulated changes
in discharge and evaluate these using simulations with modifications of the model. In the baseline model, trends of simulated and
observed discharge over 1978—2013 differ, on average over all 156 catchments, by 92 + 50 mm yr ! per 35 yrs. Accounting for
variations in vegetation dynamics, as derived from a satellite-based vegetation index, in the calculation of reference evaporation
explains 35 £ 9 mm yr ! per 35 yrs of the differences between the trends in simulated and observed discharge. Inhomogeneities in
the precipitation data, caused by a variable number of stations explain 37 + 26 mm yr ! per 35 yrs of this difference. Extending the
calibration period from 5 to 25 yrs, varying the objective function by including annually aggregated discharge data, or estimating
evaporation with the Penman-Monteith instead of the Blaney-Criddle approach has little influence on the simulated discharge
trends. The precipitation data problem highlights the importance of using precipitation data based on a stationary input station
network when studying hydrologic changes. The model structure problem with respect to vegetation dynamics is likely relevant

for a wide spectrum of regions in a transient climate and has important implications for climate change impact studies.
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1 Introduction

A vast number of studies employs hydrological models to estimate climate change impacts on hydrology. In these studies,
hydrological models are typically calibrated in the present climate and then run with climate input derived from climate models.
However, hydrological predictions under changed climatic conditions are challenging as it is not clear whether the current
generation of hydrologic models performs well under change (Bloschl and Montanari, 2010). By definition, testing models under
future climate conditions is not possible, as future observations are not available. However, climatic changes have already been
observed in the last decades. Hindcast simulations during periods with climatic variations in the past allow testing the suitability
of hydrological models under changing climatic conditions. In the differential split sample test (DSST), suggested by Klemes
(1986), a hydrological model is evaluated in a period with climate conditions that differ from those during calibration. Though
climatic contrasts between current and future conditions are likely larger than those in the observed record, this can be seen as a

minimum requirement for models applied for climate impact assessments.

Studies that investigated the performance of hydrological models this way, evaluating them in periods with climatic conditions
that differ from those of the model calibration, largely found a decrease in model performance (Seibert, 2003; Vaze et al., 2010;
Merz et al., 2011; Coron et al., 2012; Seiller et al., 2012). In a study on four catchments in Sweden, large flood peaks in the
evaluation period were strongly underestimated by the HBV model if the calibration period only contained small flood peaks
(Seibert, 2003). Vaze et al. (2010) analysed the model performance of four lumped hydrological models in 61 catchments in
southeast Australia when the model was calibrated to selected wet or dry periods of variable length. The reductions in model
performance were greater with increasing difference in rainfall between calibration and evaluation periods. While most studies
report reduced model performance in contrasting climates, Vormoor et al. (2018) did not find reduced model performance under
contrasting conditions in terms of flood seasonality and flood generating processes, when applying a conceptual hydrological

model in five catchments with changes in flood seasonality and flood generating processes in Norway.

Low model performance in contrasting climates is often characterized by biased discharge values (Coron et al., 2014; Kling et al.,
2015). This is a serious concern since changes in discharge volume are of high interest in climate change impact studies. Merz et
al. (2011) calibrated and evaluated the HBV model in 5 yrs periods in 273 catchments in Austria. They found that median flows
were overestimated by 15 % and high flows by 35 % when parameters calibrated during 1976—1981 were applied to 2001-2006.
Several studies found increased differences in discharge bias between the calibration and evaluation period with increasing

differences in precipitation (Coron et al., 2012; Sleziak et al., 2018).

The problem of poor model performance in contrasting climates has been observed for various model structures. While most
studies that investigate the transferability of hydrological models focus on lumped conceptual models, low transferability in
contrasting climate has also been observed for semi-distributed conceptual models (Merz et al., 2011; Coron et al., 2014) and

process-based models (Magand et al., 2015). Seiller et al. (2012) tested the transposability of 20 lumped conceptual hydrological
2
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models between periods with contrasting precipitation and air temperature for two catchments in Canada and Germany and they

were not able to identify a model structure that performed well in contrasting climate for all their test conditions.

Understanding the causes of poor performance in a transient climate is a key question since this determines the way forward for
hydrological modelling in a transient climate. Possible causes include data problems, poor parameterization of the model, or
structural inadequacy (Coron et al., 2014; Westra et al., 2014; Fowler et al., 2018). In case of data problems, the model should be
calibrated with corrected data; however, apart from this, simulations with projections of future climate should not be affected by
this problem. In case of parameterization problems, efforts should be invested in choosing calibration methods that result in
reliable parameterizations in a transient climate. If the problem is related to the model structure, it will be important to understand
what parts of the model structure result in reduced performance in order to avoid these structural components in climate change
impact analyses. An example of data problems that may cause poor model performance under contrasting climate conditions are
inhomogeneities in the precipitation data, which lead to biased estimates of the precipitation changes. Such inhomogeneities may
be caused by inhomogeneities in the station data itself, a variable number of stations included in a gridded data set (Fawcett et al.,
2010), or climate variations that lead to changes in the undercatch error (Ferland and Hanssen-Bauer, 2000). A poor
parameterization may be caused by a too short calibration period. However, in several studies that observed poor performance in
contrasting climate the problem could not be solved by using a longer calibration period (Luo et al., 2012; Brigode et al., 2013;
Coron et al., 2014). Too low sensitivity of the objective function to the long-term dynamics of discharge may be another cause for
a poor parameterization that results in poor performance in a transient climate. Hartmann and Béardossy (2005) observed increased
transferability of a distributed conceptual hydrological model under contrasting climate conditions when including annually
aggregated discharge data in the objective function in addition to daily discharge data. A thorough approach to test whether the
problem may be solved by improving the parameterization is by applying multiobjective calibration to the different periods with
contrasting climate (Fowler et al., 2018). Model structural inadequacy in the context of a transient climate includes changes in
catchment characteristics or dominant hydrological processes that are not reflected by the model. For example, changes in the
glacier volume or a longer vegetation period may alter the hydrologic response of the catchment and result in deviations between
simulated and observed discharge if not accounted for in the model. Despite their relevance for hydrological modelling in a

transient climate, the causes of poor performance under contrasting climate conditions have only been investigated in few studies.

This study aims at contributing to closing this gap by analysing the causes of the poor performance of a hydrological model in a
transient climate for a case study on a large number of catchments in Austria. Due to a strong climate signal over the last decades
(Schoner et al., 2011), Austria is well suited for studying climate-induced hydrologic changes. We applied a semi-distributed
hydrological model based on the HBV concept, which is widely used for operational and scientific purposes including climate
impact assessments. However, in the study by Merz et al. (2011) (Merz2011 in the following), the model was not able to estimate
changes in mean discharge in response to the observed increases in precipitation and air temperature. Applying the model

calibrated during 1976-1981 with climate data of 2001-2006 resulted in an increase of simulated discharge of on average 15 %,
3
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whereas observations show relatively stable annual discharge volumes. Here, we revisit the study by Merz2011 and investigate
what causes the differences between simulated and observed changes in discharge. For that purpose, we set up hypotheses that are
tested using modifications of the model. In particular, we analyse the effect of varying the input data for precipitation and air
temperature, increasing the calibration period, varying the objective function to include annually aggregated discharge data, and
varying the calculation of reference evaporation (Eif) to consider changes in global radiation and vapour pressure and changes in

vegetation dynamics.
2 Data and methods

2.1  Study area

This study was carried out using data from 156 catchments in Austria. The catchments were selected based on the availability of
daily discharge data for 1977-2014 (hydrological years, November to October; maximum of two years missing). We excluded
catchments with substantial anthropogenic influences from dams or water withdrawals (Viglione et al., 2013), glaciers, and
catchments where discharge exceeded the precipitation estimate. The more rigorous selection resulted in smaller set of catchments
compared to Merz2011, who used a set of 273 catchments. The median (interquartile range) of the catchment sizes is 198 (96/369)
km?. The data set includes lowland and mountain catchments and the median elevation range is 518 (373/667)-1593 (975/2126)
m, (numbers in brackets refer to the interquartile range). The most frequent land cover is forest, which covers on average
51(38/67) % of the catchment area (numbers in brackets refer to the interquartile range, based on Corine 2000 data (European

Environment Agency, 2016)), and grassland, which covers 23(14/34) % of the catchment area.

Elevation (m)
® 3
3800 2000 1500 800
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[1 Catchment boundary
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[

Figure 1 Distribution of the study catchments in Austria.
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2.2  Hydrometeorological data

Discharge data were provided by the Central Hydrographical Bureau (HZB) in Vienna. Climate data required by the hydrological
model are air temperature, precipitation, and, depending on the model variant, relative humidity, global radiation and wind speeds.
The baseline precipitation data set (P0) was derived by spatially interpolating daily precipitation values of the available stations
from HZB and the Austrian Central Institute for Meteorology and Geodynamics (ZAMG) using external drift kriging with
elevation as auxiliary variable to a 1 km?, as in Merz2011. Due to variations in the station network, the number of stations
included in the interpolation varies over time. In addition, two alternative precipitation data sets were used. As the first alternative
(P1), we used the gridded SPARTACUS data set (Hiebl and Frei, 2017). It has a temporal and spatial resolution of 24 h and 1 km
and is based on a two-step interpolation scheme. In the first step, a daily background climatology for 1977-2006 was obtained
based on 1249 stations (including 119 totalizer precipitation gauges), and in the second step, a constant number of 523 stations
was used for interpolating ratios between the daily precipitation and the background climatology. For the second alternative
precipitation data set (P2), we added a correction for systematic underestimation from gauge undercatch to the SPARTACUS data

set using the following equation (Richter, 1995)
Peorr = Porig +b- Porige (1)

where P, is undercatch corrected precipitation, P, g uncorrected precipitation, and b, e are coefficients that depend on season,
precipitation type and wind exposure. We estimated the precipitation type as snow for mean air temperatures below —1°C, as
mixed precipitation between —1°C and 3°C, and as rain for mean air temperatures above 3°C (ATV-DVWK, 2001). The
coefficients of Richter (1995) for very sheltered locations were applied to all grid points. On average over all catchments, the

undercatch correction increased precipitation by 7.2 % compared to the original data without undercatch correction.

The baseline data set for mean daily air temperature (T0) was derived by spatially interpolating mean daily air temperatures of the
available stations from the ZAMG using local ordinary least-squares regression with elevation, as in Merz2011. In addition, we
used the gridded SPARTACUS data set (Hiebl and Frei, 2016), which is based on a constant station network, as alternative input
(T1). Air temperature and precipitation were aggregated to averages by elevation zone for each catchment, as used by the

hydrological model.

For model variants that applied the Penman-Monteith approach for estimating E'.y, relative humidity, global radiation and wind
speeds were needed as further input data. Measured global radiation was used rather than global radiation derived from sunshine
duration since for this study our interest is in the changes over time and, due to e.g. changes in the atmospheric aerosol
concentrations over time (Norris and Wild, 2007), trends in sunshine duration may differ from those in global radiation.
Measurements of relative humidity at 7:00 and 14:00 and global radiation were obtained from the ZAMG. Stations with more than

5 % (15 % for global radiation) missing data during 1977-2014 (hydrological years, November to October) were excluded, which
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resulted in 125 and 6 stations for relative humidity and global radiation, respectively. Data gaps were filled using linear regression
to the station with the highest correlation. The data were interpolated onto a 1 km? grid using local ordinary least-squares
regression with elevation. The local neighbourhood was set to a default radius of 100 km for relative humidity and 200 km for
global radiation, adjusted to include at least 10 (global radiation 4) and at most 40 stations. Due to a strong influence of
inhomogeneities, long-term changes in wind speed from measured wind speed data are highly uncertain (Béhm, 2008). This is
also reflected in the fact that annual anomalies of wind speed data from 85 stations in Austria are hardly related to each other
(Duethmann and Bléschl, 2018, see Supplement S1). Uniform monthly wind speeds averaged over all years from all stations in

Austria were therefore applied in this study.

2.3  Hydrological model

2.3.1 Model description

In this study, we applied the same hydrological model as Merz2011, which is a semi-distributed conceptual model that follows the
structure of HBV (Hydrologiska Byrans Vattenbalansavdelning) (Bergstrom and Singh, 1995). The model equations can be found
in Parajka et al. (2007). The model operates on a daily time step and the spatial discretization is based on 200 m elevation bands.
Precipitation is partitioned into snow or rain based on air temperature using a threshold temperature 7;. A snow correction factor
SCF corrects undercatch of the precipitation gauges during snowfall. Snowmelt is calculated using a temperature-index approach
based on the degree-day factor DDF and the melt temperature Ty. Actual evaporation (Esim) is estimated as a function of Er and
soil moisture. It equals Err if soil moisture is above a calibrated threshold LP. Below this threshold, it linearly decreases to zero at
a soil moisture level of zero. The fraction of the sum of rain and snowmelt that results in discharge is calculated as a nonlinear
function of soil moisture. This involves the parameters FC, the maximum soil moisture storage, and the nonlinearity parameter B,
where a larger B is associated with a smaller fraction of direct runoff and vice versa. The runoff module consists of a hillslope
component and a river routing component. The hillslope component is represented by two linear soil stores that are connected
through a constant percolation rate C,. Fast runoff is generated if the state of the upper zone store is above a threshold LSUZ,
using a fast storage coefficient Ky. Medium and slow runoff components are calculated as outflow from the upper and lower zone
store, using the storage coefficients K; and K>. In the river routing component, runoff routing in streams is simulated using a

triangular transfer function involving the parameters Cr and Bmax.

2.3.2  Estimation of reference evaporation

Despite being technically external to the applied HBV model, the estimation of Er is considered part of the hydrological model

rather than part of the input data since it is calculated and not available as measured data. Err is computed on a 1 km? grid and
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aggregated to elevation zones for each catchment, as used in the hydrological model. For the baseline model, E..r was derived

based on a modified Blaney-Criddle method (DVWK, 1996), following Merz2011

Sy - 100

EO = —1.55 + 0.96 - (8.128 + 0.457 - T) - 2)

year

Where T is the mean daily air temperature at 2 m height (°C), S, the potential daily sunshine duration (h), and Sy, is the mean

yearly sum of potential daily sunshine duration (h).

In order to consider interannual variations in global radiation and vapour pressure deficit, in addition to air temperature, we

calculated E.cs using the Penman-Monteith equation for well-watered short grass vegetation (Allen et al., 1998)

185400
A-Ro =GO +Y Fx273) 7, (€~ ¢€a)
E1 =0.408 - 4

Aty (14 )

where R, is the net radiation at the crop surface (MJ m™2 d '), G is the soil heat flux density (MJ m 2 d '), 7, is the aerodynamic
resistance (s m™'), 7, is the surface resistance (s m™'), e is the saturation vapour pressure (kPa), e, is the actual vapour pressure
(kPa), A is the slope of the vapour pressure curve (kPa °C™!), and y is the psychrometric constant (kPa °C™!). According to the
reference conditions of a vegetated surface with a height 0of 0.12 m, r, = 70 s m™' and r, = 208/u, where u, is the wind speed at 2
m height (m s™"), which was derived from the wind speed at 10 m height based on a logarithmic wind speed profile (Allen et al.,
1998). The ground heat flux was neglected. The vapour pressure deficit e — e, was calculated as the average of the vapour
pressure deficit at the minimum air temperature (using relative humidity at 7:00 LT) and at the maximum air temperature (using
relative humidity at 14:00 LT). R, was estimated from global radiation (Rs; MJ m 2 d '), albedo («; set to 0.23) and net longwave
radiation (R,;; MIm2d™")

R, =a Rs;+ Ry (4)

where R, was estimated according to Allen et al. (1998) based on minimum and maximum air temperature, clear-sky solar

radiation, measured R, and the mean daily vapour pressure.

In order to consider additionally changes in the vegetation dynamics, we calculated E\r using a variable surface resistance based
on changes in a satellite-based vegetation index (E3). We used observed 15-day maximum value composite data of the
Normalized Difference Vegetation Index (NDVI) at a resolution of 8 km from the Advanced Very High Resolution Radiometer
(AVHRR) from Tucker et al. (2005). For each point in time of this biweekly series, we aggregated the NDVI data to 200 m
elevation zones based on the NDVI data for a rectangle around Austria. As the NDVI data is only available starting in 1981, we
applied the data of July 1981—June 1982 for 19761981, where the NDVI data is not available. We used the parameterization from

Sellers et al. (1996) to estimate a variable 7; from the NDVI data. This involved estimating the fraction of photosynthetically
7
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active radiation (FPAR) from transformed NDVI data (Eq. (5); (Sellers et al., 1996)), estimating the leaf area index (LAI) from
the FPAR data (Eq. (6); Sellers et al. (1996)), and estimating 7y from the LAI data (Eq. (7); Allen et al. (1998)).

S — Smi
max min

where S is a transformed NDVI value (1 + NDVI)/(1 — NDVI), and S,,;, and Sp,.x are the 5 % and 98 % quantiles of S for a

given land cover class.

log(1 — FPAR)
max 501 — FPAR ) (6)

LAI = LAI

where LAl .y is the maximum LAI of a land cover class. In Eq. (5) and Eq. (6), we applied the following coefficients for

grassland: NDVI,,;, = 0.039, NDVI,,,, = 0.674, FPAR ;i = 0.001, FPAR;,,x = 0.95, and LAl ;.4 = 5 (Sellers et al., 1996).
r, =7+ (LAI-0.5)7! (7)

where 7 is the leaf surface resistance. We applied a value of r; = 100 s m™! for well-watered grass (Allen et al., 1998). Since the
satellite based LAI values derived this way are often lower than the value of 2.88, which is assumed in the Penman-Monteith
equation for well-watered short grass by Allen et al. (1998), E3 generally resulted in lower annual E.r tha E2. Based on the annual
average ratio of E3 to E2 averaged over all catchments, E3 was multiplied by 1.2 to avoid water balance problems in the
hydrological model. Such an adjustment of E.r may be justified based on the fact that our study catchments are dominated by
forest, and the maximum possible evaporation under well-watered conditions (Emax) of forests is typically higher than E.r that
assumes short grass. For example, analyses from non-weighable lysimeters suggest Emax to be 20 %30 % higher for sites with

pine forests at typical stand ages of 80—100 years compared to sites with grass (ATV-DVWK, 2001).

2.33 Model calibration

The objective function applied for model calibration consisted of three parts. An average of the Nash-Sutcliffe efficiency of linear
and logarithmic discharge values (f,) was applied in order to achieve a balanced model performance for high and low flows. In
order to keep the volume bias low the absolute value of the relative volume bias (fy;,5) was added as a penalty. Furthermore, a
penalty for model parameters that deviate from an a priori distribution (fp) was added. The penalty function fp is based on a Beta

distribution for each parameter, as described in Merz2011. These objectives were combined in the following way
fi=wi- (1= fo) + Wy~ frias + W3+ freta (8)

setting the weights w; = 0.8, w, = 1, and w3 = 0.2.
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In order to test whether including annually aggregated discharge data in the objective function improves the model performance

under transient climate conditions we additionally applied a modified objective function

f2 =Wy (1 _fQ) +w, 'fbias +ws 'fbeta + Wy (1 _fannual) (9)

where funnua 18 the Nash-Sutcliffe efficiency calculated for annually aggregated discharge data. The weights were set to w; =
0.4, w, =1, wy = 0.1, and w, = 0.5. The objective function was minimized automatically with the shuffled complex evolution
algorithm (Duan et al., 1992). The calibration included 11 parameters. The upper and lower bounds and two further parameters of
the Beta distribution for each parameter were selected following Merz2011 (Table 1). Four parameters that showed little
sensitivity were pre-set to the following values: Tg = 2°C, Ts = 0°C, C; = 25 d> mm !, and Bmax = 10. As the focus of this study
was on calibrating the model many times for different calibration periods, catchments and model variants, characterizing
parameter uncertainties was beyond the scope of this study. For the baseline model, we used seven 5 year calibration periods
(based on hydrological years), during 1978—2012. Each simulation was started with an additional 22-months warm-up period. As

a modification, we also tested using a 25-year period as calibration period.

2.4  Analysing model problems for simulations under changing climate conditions

2.4.1  Metrics for evaluating model performance under changing climate conditions

Model performance was evaluated using the relative bias in discharge volume and the Nash-Sutcliffe efficiency (NSE). In order to
focus on the change in discharge under transient climate conditions, we used the difference between simulated and observed
discharge trends as an additional criterion. Good performance in the calibration period but inability to estimate the changes in
observed discharge resulting from the climatic changes indicates problems under transient climate conditions. Trends were
evaluated over the entire study period (1978-2013). Trend slopes were estimated by the Sen’s slope estimator (Sen, 1968) and
trend significance was assessed by the nonparametric Mann-Kendall test (Mann, 1945; Kendall, 1975). Lag-one serial correlation
was removed by applying the trend-free prewhitening technique (Yue et al., 2002). Uncertainties of the trend slope were estimated
using a bootstrapping approach. For this purpose, 1000 samples of size N were drawn, with replacement, from the record of length
N years and the Sen’s slope was calculated for each of the 1000 samples. Then, the standard deviation was determined. Trends and
the standard deviations were first derived for each catchment and then averaged over the catchments to determine average trends

and their uncertainties over a number of catchments.
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Table 1 A priori distribution of parameter values where p1 and py are the lower and upper bounds, o and f the parameters of the a priori
distribution, and pmax the parameter value at which the a priori distribution is at its maximum.

Parameter Unit Description P Pu Pmax O 8

SCF - Snow correction factor 1 1.5 1.03 1.1 2.5

DDF mm/(°C day) Degree-day factor 05 5 1.25 1.5 3.5

Tm °C Melt temperature 202 0 2 2
Maximum soil moisture

FC mm 0 600 150 1.05 1.15
storage

LP/FC ) 'Ijgtlo of limit for Eref and 0 1 094 4 12

Nonlinearity parameter of
runoff generation

Storage coefficient of

Ko days additional outlet o 2 05 2 4
K1 days Fast storage coefficient 2 30 9 2 4
K> days Slow storage coefficient 30 250 105 1.05 1.05
Co mm/day Percolation rate 0 8 2 2 4
LSuz mm Storage capacity threshold 1 100 50 3 3

2.4.2  Hypotheses for the causes of the expected mismatch between observed and simulated discharge changes

We compiled possible explanations for the expected divergence between the observed and simulated changes in discharge based
on the frameworks suggested by Westra et al. (2014) and Fowler et al. (2018) and the discussion in Coron et al. (2014). The
working hypotheses are grouped into (1) data problems, (2) problems related to the model calibration, and (3) problems of the
model structure (see Table 2). In a first analysis, the hypotheses were evaluated based on process understanding and literature.
During this process, a number of the working hypotheses were rejected or assessed unlikely a cause of the differences between the
observed and simulated discharge changes. Other hypotheses were evaluated using simulations with modifications of the model

(Table 3).
(1) Data problems

Discharge data can be misleading if they are influenced by abstractions or streamflow diversions. For example, a general increase
in water abstractions would reduce a positive streamflow trend. However, our study includes only catchments that were classified
as devoid of substantial anthropogenic influences (Viglione et al., 2013) and any existing streamflow diversions were introduced

before the beginning of our study period (BMLFUW, 2015). Erroneous trends in the discharge data could be caused by systematic

10
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trending errors of the rating curve. However, it seems unlikely that the discharge data of a large number of catchments are
afflicted by systematic trends in the same direction. Problems in the discharge data were thus assumed unlikely to be a relevant

cause for the differences between simulated and observed discharge trends.

Inhomogeneities of the precipitation data would result in biased estimates of the precipitation trends. A problem that would affect
a large number of catchments is a varying number of precipitation stations included for generating the gridded precipitation data
set. The precipitation data set used by Merz2011 was based on all available stations and included ~800 stations in the end of the
1970s and ~1050 stations around the year 2000 (Figure 2). The effect of the changes in the number of stations on the trends in the
water balance components was analysed by simulations with a precipitation data set based on all available stations (P0) and
simulations with a precipitation data set based on a constant number of stations (P1). Changes in climate variables that would
result in variations of the gauge undercatch error would also affect a large number of catchments. An increase of precipitation
intensity and a decrease of the snow-to-rain ratio is expected to result in a higher catch ratio, meaning that the precipitation
increase is stronger than perceived by the observed data. The effect of neglecting the systematic precipitation error was estimated
by simulations with a precipitation data set that is based on a constant number of stations that was corrected for the systematic
gauge undercatch considering the influence of the precipitation type and daily precipitation intensity on the catch ratio
(precipitation data set P2). Similar to the precipitation data set, the air temperature data set in the baseline model was based on a
variable station network, though the number of air temperature stations varies much less than the number of precipitation stations
(Figure 2). We investigated the effect of the changes in the number of air temperature stations on the trends in the water balance
components by simulations with an air temperature data set that uses all available stations (T0) compared to simulations with an

air temperature data set that uses a constant number of stations (T1).

1000 ////_/\4\

800

600

400 r._
Precipitation
200

Air temperature

Number of stations

0

1980 1990 2000 2010

Figure 2 Number of precipitation and air temperature stations included for the interpolation of precipitation and air temperature in the data sets
PO and TO.

11
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(2) Problems related to the model calibration

Problems in the model calibration relate to the problem that in principle parameter sets exist that allow good performance in the
calibration and evaluation period but these parameter sets are not the ones identified during model calibration. Possible causes are,
for example, a too short calibration period that results in overfitting, or processes that are relevant in the evaluation period but not
activated in the calibration period. We therefore tested whether increasing the model calibration period from 5 yrs to 25 yrs
reduces the bias between simulated and observed discharge trends. We furthermore investigated whether including annually
aggregated discharge data into the objective function improves the model performance under contrasting climate conditions, as

found in a study by Hartmann and Bardossy (2005).
(3) Problems of the model structure

In case the problem cannot be solved by rectifying problems in the data and model calibration, problems in the model structure are

likely. These include inadequate process representations and changes in the catchment that are not represented by the model.

Differences between the observed and simulated trends in streamflow may result from a misconception of changes in Err. In
Merz2011 as well as in the baseline model of our study, Ei.r is estimated using a modified Blaney-Criddle equation, which implies
that interannual changes in E\r resulting from changes in other climate variables than air temperature are not accounted for. To
consider effects of changes in global radiation and vapour pressure, we therefore additionally applied a more physically based

method for estimating E\.r using the Penman-Monteith equation (E1).

Further changes may result from changes in the vegetation dynamics as well as the land cover, such as a lengthening of the
growing season, or increases in forest at the expense of cropland and extensive grassland, as observed in many parts of Austria
(Krausmann et al., 2003; Gingrich et al., 2015). To test the possible effect of changes in vegetation dynamics on changes in the
simulated trends of streamflow and evaporation, we performed additional simulations where we calculated a modified Eer
considering changes in surface resistance based on a satellite-based vegetation index (E2). Land cover changes from agricultural
land to forest may also contribute to changes in the satellite-based vegetation index. It is therefore assumed that the simulations

with Err considering changes in vegetation dynamics include also, to some extent, the effect of changes in land cover.
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Table 2 Working hypotheses for potential causes of the divergence between observed and simulated discharge changes.

Working hypothesis

Analysis or further explanation

(1) Data problems

— Section 3.2

(1.1) Problems in the discharge data

Changes in abstractions or diversions
Rating curve errors

(1.2) Problems in the precipitation data

Inhomogeneities in the precipitation data due to
instrument changes

Inhomogeneities in the gridded precipitation data due
to changes in the number of stations

Biased estimates of the precipitation trend due to
changes in the catch ratio caused by changes in the
snow-to-rain ratio and changes in precipitation
intensities (in addition to inhomogeneities due to a
variable number of stations)

(1.3) Problems in the air temperature data

Inhomogeneities in the gridded air temperature data
due to changes in the number of stations

Catchments with anthropogenic influences were generally excluded.

Reviewed comments in the hydrological yearbooks: diversions were introduced
before the start of the study period.

Rating curve errors unlikely to occur in the same direction for a large number of
catchments.

— Unlikely to be relevant for a large number of catchments.

Introduction of heated precipitation gauges

— Would result in larger precipitation increases and thus increase the gap between
changes in Eyp and changes in Esim. Since at most locations with a heated gauge,
there is a manually operated gauge in addition and values of the latter are used to
report daily precipitation sums, this effect is likely not relevant.

Simulations with a precipitation data set that uses a constant number of stations
(model variant V1)

Simulations with a precipitation data with a constant number of stations and
correction for the systematic precipitation undercatch (considering the precipitation
type and precipitation intensity (based on daily precipitation amount))

(model variant V2)

Simulations with a data set that uses a constant number of stations
(model variant V3)

(2) Problems related to the model calibration

— Section 3.3

Too short calibration period

Objective function insensitive to long-term discharge
variations

Simulations with a 25 year calibration period
(model variant V4)

Simulations with a modified objective function that includes annually aggregated
discharge data
(model variant V5)

(3) Problems of the model structure

— Section 3.4

Effects of changes in radiation and saturation deficit
not reflected by the model

Effects of changes in the vegetation dynamics and land
cover not reflected by the model

Calculation of E,¢f with the Penman-Monteith approach
(model variant V6)

Calculation of E.ef using a variable surface resistance based on a satellite-derived
vegetation index
(model variant V7)
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Table 3 Overview of model variants.

Abbreviation  Description Input Input Calibration Objective Calculation
precipitation  air temperature  period function of Eref

VO Baseline model PO TO 5yrs fi EO

V1 Vary P data set P1 TO 5yrs f EO

V2 Include P undercatch correction P2 TO 5yrs f EO

V3 Vary air temperature data PO T1 5yrs f EO
\Z: Increase length of calibration PO TO 25 yrs fi EO

period

V5 Vary objective function PO TO 5yrs f EO

V6 Eref based on Penman-Monteith PO TO 5yrs f E1l

V7 Modified Et dependent on NDVI PO TO 5yrs f E2

V8 Combine V2 and V7 P2 TO 5yrs fi E1l

3 Results

3.1  Deviations between simulated and observed changes in discharge and evaporation of the baseline model

There is a clear gap between simulated and observed trends in discharge when the model calibrated in the first subperiod is
applied to the entire period. On average over all catchments, the difference is 92 + 50 mm yr! per 35 yrs over 1978-2013 or 12.3
+ 6.8 % in relation to observed flow (Table 4). This is illustrated in Figure 3a that shows observed and simulated discharge for the
model calibrated to 1978—1982 over the entire simulation period. Observed discharge of the 156 catchments showed only small
increases over 1978-2013, with an average trend of 30 = 94 mm yr ! per 35 yrs and significant (p < 0.05) increases and decreases
in 11 % and 7 % of the catchments. In contrast, simulated discharge on average increased by 122 + 82 mm yr! per 35 yrs, with
significant increases and decreases in 37 % and 1 % of the catchments. Discharge trends were overestimated by the model in
many catchments all over Austria (Figure 3c). Large differences between simulated and observed trends particularly occur in

central Austria, southern Carinthia and western Tyrol.

The deviations in simulated and observed changes in discharge correspond to deviations in simulated and observed changes in
evaporation. The dark blue line in Figure 3b shows the difference between observed precipitation and discharge, which may be
interpreted as water-balance-based evaporation (Eyp), assuming negligible storage changes. Comparing temporal variations in Eyws
and Egm, both Ey, and Egm show increases, but Egn increased at a much lower rate than Ey,. Furthermore, the trend of Eyyp

reversed for the last two subperiods, whereas Esim increased over the entire simulation period. While the average trend of Eyp, over
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1978-2013 is 131 + 59 mm yr ! per 35 yrs, with significant increases in 79 % of the catchments, the average trend of Egm is 50 =

13 mm yr! per 35 yrs, with significant increases in 97 % of the catchments.

In order to investigate whether the overestimation of the simulated discharge trend is related to a decrease in simulated storage
that is not represented by observed storage we analysed simulated changes in storage. Simulated storage changes were, on average
over all catchments, 8 + 20 mm over 1978-2013. This is in agreement with no consistent large scale groundwater changes in the

observations (which is the largest component of the simulated storage) (Blaschke et al., 2011; Neunteufel et al., 2017).

While discharge volume biases during calibration were small, with average values over all catchments of 0.005-0.03 for the
different subperiods, discharge biases during evaluation were much higher, with average values of —0.13-0.18 over the study
catchments (Figure 4a). Curves of average bias during evaluation over the different subperiods for models calibrated in different
subperiods show an interesting pattern. Average bias values during evaluation increase from subperiod S1 to S6 by 0.15-0.18 and
decrease again for the last period. The curves run almost parallel and differ by a vertical offset that ensures low bias during the
calibration period. NSE values during model calibration varied in the range of 0.74-0.77 on average over the catchments, showing
that the model performed well in each subperiod when calibrated to it. As expected, model performance during evaluation was
lower, with average values over the study catchments of 0.58-0.73 (Figure 4b). An increase in model performance loss with
increasing distance from the calibration to evaluation periods was only observed for evaluating the models in subperiod S1 and

S2.

The performance of the baseline model agrees well with the study by Merz2011, who found average NSE during model
calibration of 0.74—0.77 and average NSE during model evaluation of 0.64—0.69, when evaluating over all subperiods except the
one used for calibration (compared to 0.74-0.77 during calibration and 0.67-0.70 during evaluation in our study). Discharge
biases during calibration were slightly smaller in the present study, due to including a penalty for discharge bias in the objective
function. The longer study period used in our study revealed that the trend of an increasing difference between simulated and
observed discharge, when applying the model calibrated in subperiod S1 to the entire study period, was not continued during the

last subperiod.
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Figure 3 (a) Temporal variations in simulated discharge (QOsim) and observed discharge (Qobs), as averages over all 156 study catchments. (b)
Temporal variations in simulated evaporation (Esim) and evaporation derived from the water balance (Ewb), as averages over all study
catchments. The thick lines show subperiod annual means, the thin lines annual sums, and the dashed lines linear trends. (c) Spatial pattern of the
differences of simulated minus observed trends in discharge. Filled circles indicate significant trends at p<0.05.

Table 4 Linear trends in water balance components (mm yr~' per 35 yrs) over 1978-2013 as averages over all catchments. Simulated values
refer to the model calibrated in subperiod S1 1978—1982. Uncertainties relate to standard deviations of the trend slope averaged over all
catchments. For trends in Qobs — Osim, we first derived series of the differences Qobs — Osim for each catchment and then estimated trends.

Pobs Eref Qobs Ewb Qsim Esim Qobs — Qsim
VO baseline model 161+89 69+ 13 30+ 94 131459 122482 50+ 13 92 +50
V1 vary P data set 122489 69+ 13 30+ 94 9257 85 + 80 49+ 14 55+ 47
V2 include Prundercatch 120 + 94 69 +13 30+ 94 90 +57 78 + 86 57+13 48+ 46
correction
V3 vary air temperature data 161 + 89 69+13 3094 131+£59 120+ 82 51+13 90 +£50
V4 increase length of 161+ 89 69+ 13 30+ 94 131459 117+ 82 56+ 14 87 + 50
calibration period
V5 vary objective function 161 + 89 69 +13 30+94 131+59 119+ 83 51+14 89 +49
V6 Erer based on Penman- 161 + 89 71+17 30+ 94 131459 120+ 84 51+ 14 89 + 49
Monteith
V7introduce NDVI 161489 110+ 17 30+ 94 131459 87+83 84+ 16 56+ 49
dependent Ef
V8 combine V2 and V7 120 + 94 110+ 17 30+ 94 90+ 57 35+ 86 101417 5446
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Figure 4 (a) Bias and (b) NSE for the different subperiods averaged over all study catchments for the baseline model V0. Each line refers to
models calibrated in one subperiod, showing bias and NSE during calibration (marked by the filled circle) and during evaluation in the other six
subperiods.

3.2 Data problems

3.2.1 Precipitation

Driving the hydrological model with a precipitation data set based on a variable number of precipitation stations may influence the
estimated trend of precipitation and thus the trend of simulated discharge. In order to quantify this effect, we performed model
simulations with a precipitation data set based on a constant number of stations (P1) in comparison to the baseline precipitation
data set PO that uses a variable number of stations. This reduced the gap between simulated and observed discharge from 92 + 50
mm yr ! per 35 yrs to 55 + 47 mm yr ! per 35 yrs (Table 4), i.e. a reduction by 37 + 26 mm yr ! per 35 yrs (Table 5). The reduced
gap between simulated and observed discharge is consistent with the difference in the trends in the precipitation data sets. The
baseline precipitation data set PO suggests a precipitation increase of on average 161 £ 89 mm yr ! per 35 yrs, whereas the
precipitation data set P1 results in an increase of 122 + 89 mm yr ! per 35 yrs (Figure 5a). Better model performance with respect
to changes in streamflow volume is also reflected by smaller increases in bias during evaluation in the different subperiods (Figure

6b).

Changes in the snow-to-rain ratio and in the precipitation intensity may affect the undercatch error and thus the precipitation trend.
Figure 5c—e shows that, over the study period, the snow-to-rain ratio decreased and the daily precipitation intensity increased,
whereas the number of precipitation days remained relatively stable. In the precipitation data sets PO and P1, the precipitation
undercatch error is neglected. In order to estimate the magnitude of the effect of changes in air temperature and precipitation
intensity on changes of the undercatch error, we performed simulations with a precipitation data set that was corrected for
undercatch accounting for daily precipitation intensity and precipitation type, which was estimated based on air temperature
(precipitation data set P2). Precipitation data set P2 exhibits generally higher precipitation and, with an average trend of 120 + 94
mm yr ! per 35 yrs, a similar absolute and a lower relative precipitation increase over time compared to the precipitation data set

P1 (Figure 5a). Simulations with precipitation data set P2 resulted in a gap between simulated and observed discharge trends of 48
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+ 46 mm yr ! per 35 yrs (Table 4), the tendency to further reduce the gap compared to simulations with the precipitation data set

P1 of 7+ 9 mm yr ! per 35 yrs was not significant.

3.2.2  Air temperature

In order to investigate the possible effect of changes in the station network for air temperature data, we performed simulations
with gridded air temperature data based on stations with a complete record over the study period (T1), as compared to simulations
with a gridded data set based on all available air temperature series (T0). This showed virtually no differences in discharge trends
between the two variants (Table 4). The small effect of varying the air temperature data set can be explained by the fact that

changes in the station network were only small (Figure 2) and the two data sets result in very similar changes over time (Figure 5).
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Figure 5 Temporal variations of (a) precipitation, (b) air temperature, (c) fraction of snow and mixed precipitation (estimated as precipitation on
days with average daily air temperatures below 3°C), (d) precipitation intensity (precipitation day defined as day with precipitation > 0.1 mm
d™"), (e) number of precipitation days per year; as represented by different data sets, averaged over all catchments. The thick lines show
subperiod means, the thin lines annual sums, and the dashed lines linear trends, the different colors represent different data sets. Precipitation
data set PO is based on a variable number of stations over time, P1 is based on a constant number of stations, and P2 is based on a constant
number of stations and includes a correction for undercatch. Air temperature data set TO is based on a variable number of stations and T1 is
based on a constant number of stations.
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Figure 6 Bias for the different subperiods averaged over all study catchments for model variants V0-V3 and V5-V8 (model
variant V4 was not calibrated for different subperiods). Each line refers to models calibrated in one subperiod, where the filled
circle marks the calibration period, showing bias during the calibration period and during evaluation in the other six subperiods.
For a description of the model variants see Table 3 and section 2.4.2.
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Table 5 Working hypotheses for potential causes of the divergence between observed and simulated discharge changes that were further
analysed and estimated magnitude of the effect on the gap between trends in Qobs and QOsim (mm yr~! per 35 yrs) over 1978-2013 compared to the
baseline model. This was calculated by deriving series of the differences in annual discharge of the respective model variant compared to the
baseline model (e.g., Osimvi — Osim,vo) for each catchment and then estimating trends. Uncertainties relate to standard deviations of the trend
slope averaged over all catchments.

Magnitude of the effect

Working hypothesis Result (mm yrt per 35 yrs)

(1) Data problems — Section 3.2

(1.2) Problems in the precipitation data

Inhomogeneities in the gridded precipitation data due to Reduces the gap between changes in

-37+2
changes in the number of stations Qobs and Qsim V-3 6
Biased estimates of the precipitation trend due to changes in
the catch ratio caused by changes in the snow-to-rain ratio Reduces the gap between changes in U -44+28
and changes in precipitation intensities (in addition to Qobs and Qsim
inhomogeneities due to a variable number of stations)
(1.3) Problems in the air temperature data
Inhomogeneities in the gridded air temperature data due to  Little effect on simulated discharge 145
changes in the number of stations trends -
(2) Problems related to the model calibration — Section 3.3

. . . Little effect imulated disch
Too short calibration period ftte eftect on simulated discharge b -4%9
trends

Objective function insensitive to long-term discharge Little effect on simulated discharge L -3+13
variations trends -
(3) Problems of the model structure —> Section 3.4
Effects of changes in radiation and saturation deficit not Little effect on simulated discharge 247
reflected by the model trends V-2
Effects of changes in the vegetation dynamics and land cover  Reduces the gap between changes in 43549

not reflected by the model Qobs and Qsim.
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33 Problems of the model calibration

3.3.1  Varying the length of the calibration period

In order to evaluate whether the calibration period was too short, we increased the calibration period from 5 yrs to 25 yrs (model
variant V4). This resulted in an average discharge trend of 117 + 82 mm yr ! per 35 yrs over 1978-2013 (Table 4) and thus

virtually no effect compared to the baseline model.

3.3.2  Varying the objective function

Similarly, changing the objective function by including annually aggregated discharge data led to an average discharge trend of
119 + 83 mm yr ! per 35 yrs over 1978-2013 (Table 4) and thus no improvement in the simulation of the long-term discharge

trends either.

34 Problems of the model structure

3.4.1 Calculation of Er using the Penman-Monteith equation

To estimate the effect of using a simplified versus a more physically-based equation for estimating E..r, we compared simulations
with Eyr estimated by the Blaney-Criddle method (simulation VO) to simulations with E.. estimated by the Penman-Monteith
method (model variant V6). The results showed only negligible differences between the two model variants in terms of simulated
discharge trends (Table 4). This is consistent with small differences between the trends in E.s estimated by the two different
methods, with average trends of 69 = 13 mm yr™! per 35 yrs for EQ (Blaney-Criddle) and 71 + 17 mm yr! per 35 yrs for E1
(Penman-Monteith) (Figure 7).

3.4.2  Calculation of Eref considering changes in vegetation dynamics

In order to consider changes in the vegetation dynamics, we estimated changes in surface resistance based on changes in a
satellite-based vegetation index for the calculation of Ers (model variant V7). Accounting for vegetation dynamics in the
calculation of Eir increased trends in Egm to 84 + 16 mm yr ! per 35 yrs, compared to 50 = 13 mm yr ! per 35 yrs in the baseline
model (Table 4). This reduced the gap between simulated and observed discharge trends from 92 + 50 mm yr ! per 35 yrs to 56 =
49 mm yr ! per 35 yrs (Table 4), i.e. a reduction by 35 = 9 mm yr ! Increased trends in Esm are consistent with Eyr trends that

increased from 69 + 13 mm yr ! per 35 yrs in the baseline model VO to 110 + 17 mm yr ! per 35 yrs in model variant V7.

Combining the use of the precipitation data set P2 and the consideration of vegetation dynamics in the calculation of Err (i.e.
model variant V8), the differences in trends between simulated and observed discharge largely disappeared (Table 4). Bias values

in the evaluation period for variant V8 show only little variation between subperiod S2 to S6, but some variation remains when
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Figure 7 Temporal variations of Erer as calculated by three different methods, averaged over all catchments. The thick lines show subperiod
means, the thin lines annual sums, and the dashed lines linear trends, the different colors represent different data sets. Calculation of Erer by: EO
Blaney-Criddle, E1 Penman-Monteith, E2 Penman-Monteith using a variable surface resistance based on changes in a satellite-based vegetation
index.

transferring models from subperiods S1 or S7 to subperiod S2 to S6, or vice versa (Figure 6). Bias values in the evaluation period

were reduced from —0.13-0.18 in the baseline model to —0.03—0.10 in model variant V8.

4 Discussion

The model structure deficiencies with respect to vegetation dynamics, identified as one cause for the poor performance of the
HBYV model in Austrian catchments, are likely relevant for a large number of studies in a transient climate, including simulations
in the context of climate change impact assessments. In a changing climate, changes in vegetation dynamics (such as increased
growing season length) can have substantial effects on changes in the water balance. While the original model neglected changes
in the vegetation activity or length of the growing season, considering these changes by calculating E..r accounting for changes in
surface resistance based on changes in a satellite-based vegetation index reduced the gap between simulated and observed
discharge trends by 35 + 9 mm y ! per 35 yrs. This is in agreement with other studies that demonstrate impacts of climate-
induced changes in growing season length and vegetation growth on the water balance (Caldwell et al., 2016; Hwang et al., 2018;
Kim et al., 2018; Gaertner et al., 2019). For example, long-term hydrologic changes in two forested catchments in the southern
Appalachians could only be simulated if full vegetation dynamics were incorporated in the eco-hydrologic model (Hwang et al.,
2018). Lengthening of the growing season intensified climatically driven increases in evaporation and reductions in streamflow in
a mixed forest catchment in New England (Kim et al., 2018). Decreased catchment streamflow over the last 15 years was linked to
increased growing season length in six northern headwater catchments (Wang et al., 2019). Increases in evapotranspiration in the
central Appalachian Mountain region were attributed to longer growing seasons, with an increase of growing season length of 1

day resulting in a moderate increase of evapotranspiration of 0.5 mm yr ' (Gaertner et al., 2019). Here, we considered changes in
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vegetation dynamics by using a variable surface resistance based on changes in a satellite-based vegetation index. Based on a
rather simple approach, this should be seen as a first order estimate to demonstrate the significance of changes in vegetation
dynamics on the water balance. While in this study we assume that the simulations accounting for vegetation dynamics also partly
reflect the effects of changes in land cover, an approach that allows disentangling these effects would be preferable in future work.
The changes in vegetation dynamics were derived from satellite-based data, which are often not available in the context of climate
change impact assessments. Future work should therefore aim at approaches that simulate the changes in vegetation dynamics in
response to climatic changes that may be implemented into conceptual hydrologic models. The effect of increased atmospheric
CO:; concentrations on surface resistance was neglected in the present study. At the global scale, it is estimated that this effect may

have reduced evaporation in the order of 1.6 to 2.0 mm yr ! decade™ since the 1960s (Gedney et al., 2006; Piao et al., 2007).

In this study, we found problems in the model structure with respect to the calculation of evaporation to contribute to poor model
performance in a transient climate. Model structural problems albeit in different model components were also found to cause poor
performance in a transient climate in other studies. For a case study in south Australia, model performance was improved by
allowing the parameter for the maximum capacity of the soil store to vary in time as a function of a linear trend, which was
interpreted as increased catchment storage through an increase in farm dams in the catchment (Westra et al., 2014). For a case
study in southwest Australia, introducing a nonlinearity parameter and a threshold value for the rainfall-runoff relationship
enabled the simulation of dry and non-dry years with the same parameter set, which was not possible with the original model

(Fowler et al., 2018).

The mismatch between simulated and observed discharge trends was partly caused by inhomogeneities in the precipitation data.
Thus, the problem of the limited suitability of the hydrological model under transient conditions is less severe than previously
assumed. The comparison of the precipitation data sets based on a constant and variable station network (Figure 5a) shows very
well that trend analyses of gridded data based on a variable number of stations can be misleading. Particularly large effects of
changes in the gauge network on estimated trends may occur if the gauged precipitation values are interpolated directly (as for the
baseline precipitation data P0), in contrast to interpolation methods that make use of a two-step procedure by interpolating against
a climatology (Fawcett et al., 2010). While the SPARTACUS data are currently seen as the best-suited gridded data set for trend
analyses in Austria, they may however contain further inhomogeneities. Network inhomogeneities were avoided by using a
constant station network and interpolating against a monthly climatology. However, inhomogeneities may be present in the series
of individual stations. Homogenized series were available only for 4 % of the station data used for the SPARTACUS data set, and
it is estimated that 25 % of the station used may still be affected by inhomogeneities (Hiebl and Frei, 2017). However, while we
expect changes in the precipitation trends for individual (smaller) catchments, it seems unlikely that inhomogeneities in the station

data cause changes in the precipitation trends in the same direction for a large number of catchments.
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Considering the precipitation undercatch, including effects of climate variability on the undercatch error, had a small and not
significant effect. Since high quality wind speed data were not available, wind speeds were not considered in the calculation of the
undercatch error. Analyses of the available data in Austria over 1977-2014 show a slight decrease in wind speeds (on average -3.0
+ 2.5 % per decade, see Supplement S2 in Duethmann and Bloschl (2018). Decreasing wind speeds would strengthen the
decreasing trend of the undercatch error and mean that our estimate of this effect on the difference between simulated and

observed discharge trends is at the lower end.

Increasing the calibration period from 5 to 25 yrs did not reduce the gap between trends in simulated and observed discharge
(Table 4). This is in agreement with several other studies that found little improvement of the observed poor performance in
contrasting climate by using a longer calibration period (Luo et al., 2012; Brigode et al., 2013; Coron et al., 2014). Seibert (2003)
found low performance of their model for large floods, when there were no large floods in the calibration period. Possible
problems in the parameterization were analysed by a stronger focus of the objective function on floods or by calibrating to
groundwater data in addition to discharge, but these changes did not solve the problem. However, other studies have shown
problems in the model calibration to be one cause of poor transferability in contrasting climates (Hartmann and Bardossy, 2005;
Fowler et al., 2016). Hartmann and Bardossy (2005) found that changes to the objective function, such as including annually
aggregated discharge data in the objective function in addition to daily discharge data, can improve the transferability of a
distributed conceptual hydrological model under contrasting climate conditions. In a study that used five different model
structures and 86 catchments in Australia, Fowler et al. (2016) investigated whether failures of the DSST were due to problems of
model parameterization or model structure (after excluding catchments with data issues such as systematic errors in the discharge
and precipitation series), using multiobjective calibration to the contrasting periods. Depending on the acceptance threshold for
good model performance, parameterizations that result in a good model performance in a transient climate were found in 35 % or

55 % of the cases of DSST failure.

The present study included a large number of catchments, so we assume that our results are robust. However, it is limited to a
particular hydrologic model and a particular region. It should therefore be complemented by further studies on the causes of poor
(and good) performance of hydrological models in transient climate conditions. The aim is a more complete picture on in what
cases what model structure components and what parameterization methods result in poor model performance in a transient
climate so that these model structure components and parameterization methods can be avoided for applications where good
model performance in a transient climate is relevant, as for example in climate change impact assessments. Ultimately, this will

increase the robustness of hydrologic simulations in a changing climate.
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5 Conclusion

In this study, we investigated why the HBV model failed to predict changes in discharge in response to observed increases in
precipitation and air temperature for 156 catchments in Austria. The baseline model overestimated the observed discharge trends
over 1978-2013 and on average over all catchments by 92 = 50 mm yr ! per 35 yrs, or 12.3 & 6.8 % per 35 yrs relative to observed
discharge. Simulations with variants of the model showed that the poor performance of the HBV model in Austrian catchments in
a transient climate could largely be ascribed to two problems, a model structure that neglects changes in the vegetation dynamics,
and inhomogeneities in the precipitation input. Considering changes in the vegetation dynamics by calculating E..r accounting for
changes in surface resistance based on changes in a satellite-based vegetation index reduced the gap between simulated and
observed discharge trends by 35 + 9 mm yr ! per 35 yrs. Inhomogeneities in the precipitation data set due to a variable number of
stations on average explained 37 + 26 mm yr! per 35 yrs of the difference between simulated and observed discharge trends.
Extending the calibration period from 5 to 25 yrs, including annually aggregated discharge data in the objective function or
estimating evaporation with the Penman-Monteith instead of the Blaney-Criddle approach had little influence on the simulated
discharge trends. The model structure deficiencies with respect to vegetation dynamics are likely relevant for a large number of
studies in a transient climate, including climate change impact studies. The precipitation data problem highlights the importance
of using precipitation data based on a constant number of stations for studies on long-term dynamics. Our study emphasizes the
importance of considering interrelations between changes in climate, vegetation and hydrology for hydrological modelling in a

transient climate.

Data availability. The discharge data and precipitation data from HZB can be accessed through https://ehyd.gv.at/ (last access: 26
November 2019). The meteorological data from ZAMG are currently not freely available; requests should be directed to
klima@zamg.ac.at. The Corine land cover map can be downloaded from https://www.eea.curopa.eu/data-and-maps/data/clc-2000-
vector-6 (last access: 26 November 2019). The SRTM DEM can be obtained from http://srtm.csi. cgiar.org (last access: 26
November 2019). The NDVI data can be downloaded from https://ecocast.arc.nasa.gov/data/pub/gimms/. The hydrological model

simulations are available upon request from the first author.
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